

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 2, February : 2024

UGC CARE Group-1, 133

PERFORMANCE EVALUATION OF CLOUD WORKFLOW SCHEDULING USING DEEP

ENFORCEMENT LEARNING

1K.S.S. Naga Teja, 2Y Sudha 1,2Assistant Professor, Department of Computer Science and

Engineering 1St. Martin’s Engineering College, Secunderabad, Telangana, India. 2Malla Reddy

Engineering College, Secunderabad, Telangana, India. kshymaeee@smec.ac.in

ABSTRACT

Cloud computing is a platform that provides refined services to a large number of users over a network.

Scheduling is one of the fundamental solutions to enhance the efficiency of all cloud-based services.

Cloud scheduling assigns accessible cloud resources to tasks and optimizes numerous performance

metrics. The massive scale of workflow as well as the elasticity and heterogeneity of cloud resources

make cloud workflow scheduling difficult. In such a case, machine learning based scheduling models

using neural networks can be leveraged to solve this challenging problem. The makespan and

execution cost are the two critical performance metrics in workflow scheduling. In this study, a

scheduling strategy for workflow is proposed that uses a deep neural network model in a reinforcement

learning setting. The proponed Deep Reinforcement Learning based Workflow Scheduling (DRLWS)

model minimizes the makespan and total execution cost. Simulated experiments show that the DRLWS

model can find better results.

Keywords: Deep Reinforcement learning, Cloud Computing, Workflow Scheduling, Deep Neural

network.

I.INTRODUCTION

Cloud computing is a pay-as-you-go service-oriented model used to provide services to users as per

their respective demands. As the rapid increase in demand for these services, there is an underlying

need of improving this platform to improve its quality of service (QoS). Scheduling plays an important

role in improving all cloud-based services and optimizing overall system performance [1]. Scheduling

workflows in cloud is referred to as matching workflow tasks onto respective acquired virtual

machines (VMs), which is aimed at complete execution of workflows by considering their QoS

requirements.

A workflow is a model of a complex computation, representing it as a group of specific smaller tasks

and dependencies. Workflows may be simple or scientific. Scientific workflows are defined with the

help of Directed Acyclic Graphs (DAG) as they frequently describe the precedence constraints of tasks

in a workflow application [5]. The scientific workflows can be memory, CPU, or I/O intensive based

on the nature of the user application. The CPU intensive workflows spend most of the time executing

the tasks on the processors. However, the memory-intensive workflows require more physical memory

to store the data on a server. Finally, the I/O-intensive workflows spend most of the time performing

an input-output operation on the server [2]. Many scientific applications like astronomy, physics and

bioinformatics are based upon these workflows.

Scientific workflows contain many distinct tasks and complex structures. The large number of tasks

and inter-dependencies between different tasks make it difficult to efficiently schedule cloud resources

to scientific workflows. The scheduler must consider these dependencies while scheduling workflows

[3]. The workflow scheduling problem in heterogeneous computing systems like cloud is an NP-hard

optimization problem, because the amount of computation required for finding optimum solutions

increases exponentially as the problem size increases [4]. Numerous state of the art workflow

scheduling schemes has been put forwarded for scheduling scientific workflows in clouds. The existing

algorithms offered solutions from numerous aspects. These algorithms are mainly divided into two

types: heuristics [6] and meta-heuristics [7]. Single heuristic or a combination of heuristics and meta-

heuristics [8] called hybrid schemes has been designed in the existing works, there remains a need for

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 2, February : 2024

UGC CARE Group-1, 134

a workflow scheduling scheme that can quickly and efficiently solve a scheduling problem thereby

optimizing the QoS constraints like makespan, cost, response time, resource utilization etc.,

Machine learning (ML) algorithms are the most popular methods for solving workflow scheduling

problems. ML is a vast domain of artificial intelligence that give programs the capability to learn

patterns, behavior, models and functions, and use these informations to make better decisions.

Reinforcement Learning (RL) is an important branch of ML that does not learn from a labeled training

set, but learns from the feedback information of the environment, which is vital for scheduling

problems because high quality labeled data is impossible to generate [9]. Deep learning is a collection

of techniques for using neural networks to solve ML tasks [10]. Deep reinforcement learning combines

the RL and deep learning, which can solve more complex problems [11].

Based on above observations, in this work, the workflow scheduling problem is formulated into a Deep

Reinforcement Learning Algorithm for multi-objective workflow scheduling aiming at optimizing

both makespan and cost.

II. RELATED WORK

Scientific workflow applications are collections of several structured activities and fine-grained

computational tasks related to data and control flow dependencies. Efficient scheduling is very

important to scientific workflows. Scheduling deals with the allocation of VMs to workflow tasks. Due

to the diverse set of workflow applications, the particular challenges and opportunities for workflow

scheduling need to be developed. Hence, several works have been proposed in the field of workflow

scheduling in the last two decades with the aim of optimizing one or more objectives such as makespan,

mean flow time, mean tardiness, resource utilization, total execution cost, etc.. This section briefly

reviews various workflow scheduling algorithms that has been proposed in different literatures.

A heuristic is a technique designed for finding an approximate solution to a problem with complex

data more quickly when classic methods fail to find any exact solution. The traditional methods are

mainly based on heuristic algorithms. Farzaneh Abazari et al. [12] designed a heuristic algorithm Multi

Objective Workflow Scheduling (MOWS) based on the task’s completion time and security

requirements. A new attack response approach was presented in their work that reduces certain security

threats providing a reliable scheduling of workflows. Cropper et al. [13], a multi-objective list

scheduling approach for workflow applications is proposed. Based on a set of objectives constraints

and weights defined by user, the algorithm attempts to find an appropriate Pareto solution in the region

of interest for the users. The algorithm is customized and analyzed for four objectives: makespan, cost,

reliability, and energy.

A metaheuristic is a high-level problem-independent algorithmic framework that provides a set of

guidelines to develop heuristic optimization algorithms. Metaheuristic algorithms are usually designed

for global optimization. Shahram Jamali et al.[14] introduced a new hybrid metaheuristic algorithm

based on particle swarm optimization (PSO) and gravitation search algorithms. The proposed

algorithm, in addition to processing cost and transfer cost, takes deadline limitations into account. The

proposed workflow scheduling approach can be used by both end-users and utility providers. Shirvani

et al. [15] presented a hybrid discrete particle swarm optimization (HDPSO) algorithm that has three

main phases. At the first phase a random algorithm following by novel theorems is applied to produce

swarm members; it is as input of presented new discrete particle swarm optimization (DPSO)

algorithm in the second phase. To avoid getting stuck in sub-optimal trap and to balance between

exploration and exploitation, local search improvement is randomly combined in DPSO by calling Hill

Climbing technique at the third phase to enhance overall performance. Second and third phases are

iterated till the termination criterion is met.

RL is one of the three basic machine learning paradigms together with supervised learning and

unsupervised learning. RL has been developed as a promising approach to solve the sequential

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 2, February : 2024

UGC CARE Group-1, 135

decision- making problems where the agent makes sequential decisions by continually interacting with

the environment [16, 17]. Model-free deep reinforcement learning is a combination of the deep neural

network (DNN) with RL which is capable of making intelligent sequential decisions in sophisticated

environments. Orhean et al. [18] solved the workflow scheduling problem for heterogeneous

distributed resources using reinforcement learning (Q-learning and SARSA) to reduce the task

execution time by implementing a Machine Learning Box (MBox). The Machine Learning Box offers

scheduling services through the perspective of reinforcement learning algorithm. Huifang Li, et al.[19]

proposed an improved Deep Q Network (DQN)-based RL algorithm for workflow scheduling to

optimize dual objectives like makespan and cost simultaneously. The performance of DQN and Actor-

critic (AC) based RL algorithm in scheduling workflows was tested respectively, and then the reward

function for the DQN algorithm was modified to improve its convergence.

Mikhail Melnik et al.[20] proposed a scheduling scheme based on Artificial Neural Networks and the

principles of Reinforcement Learning for scheduling workflows. Experimental results showed that the

Neural Network Scheduling (NNS) algorithm is able to learn how to provide qualitative schedules in

terms of workflows’ makespan. Wei et al. [21] proposed a QoS-aware job scheduling algorithm for

applications in a cloud deployment. They used DQN with target network and experience replay to

improve the stability of the algorithm. The main objective was to improve the average job response

time while maximizing VM resource utilization. Wang et al. [22] solved workflow scheduling problem

aiming at minimizing completion time and cost using a DQN model. The authors applied a deep-Q-

network model in a multi-agent reinforcement learning setting to guide the scheduling of multi-

workflows over infrastructure-as-a-service clouds. To optimize multi-workflow completion time and

user’s cost, they considered a Markov game model, which takes the number of workflow applications

and heterogeneous virtual machines as state input and the maximum completion time and cost as

rewards. To the best of authors’ knowledge, few works can be found using DRL method in the

literature. In this work, a novel scheduling strategy DRLWS is established for scheduling workflows

in cloud

III. PROBLEM DESCRIPTION

3.1 Workflow Application Model

The workflow scheduling problem is presented as a DAG W f =< T, E > where T = {ti} is a set of

tasks and E = {e j,k} is a set of edges. Each task ti represents a computational model or application

that should be executed. An edge e j,k between tasks t j and tk corresponds to data dependencies among

them. In this case, task tk is a child task and it could not begin its execution before it receives all

required input data from parent task t j .Two functions are characterized : suc(t) is a set of children of

task t and

prd(t) returns its parent tasks. Tasks without parents are called initial tasks and tasks without children

are called exit tasks. An example of a workflow model is given in Figure 1. The labels T1, T2….T11

represent the tasks and the nodes of the DAG, while the edges show the

dependencies between the tasks. These dependencies show that child tasks cannot start before all

parent tasks finish.

Figure 1. Sample DAG with 7 tasks

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 2, February : 2024

UGC CARE Group-1, 136

The cloud provides different types of VMs to its clients. These VMs are connected through a network

and can communicate with each other, can be represented as V={V1,V2,….Vn) where n is the number

of VMs.

3.2 Workflow Scheduling Formulation

. Workflows are commonly used in distributed computing environments like clouds for their

powerful capabilities in modeling a wide range of applications, including scientific computing,

multiprocessors system and big data processing applications [18]. Therefore, the workflow scheduling

problem is the mapping of workflow tasks to the virtual machines T V .For scheduling

workflows deep reinforcement learning is used in this study and the objectives of the proposed work

are to minimize the makespan and cost. The scheduling problem can be formulated as a multi-objective

problem given by

The cost is the total rental cost of all VMs for the whole workflow execution and calculated as in (3).

prepresents cost per the interval unit of virtual machine Vk. The makespan MS is calculated as follows:

(4)

The execution time Et of task ti on resource Vk, can be calculated as follows:

(5)

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 2, February : 2024

UGC CARE Group-1, 137

3.3 Reinforcement Learning

Reinforcement learning combines the fields of dynamic programming and supervised learning to yield

powerful machine-learning systems. RL is the branch of machine learning that deals with training

agents to take an action a, as a response to the state s of the environment to get a notion of reward, r as

shown in Figure 2. The ideas involved in RL were originally developed by Sutton and Barto [24].

Figure 2. The basic reinforcement learning model

The task of the agent is to learn a policy for choosing actions in each state to receive the maximal long-

run cumulative rewards. RL methods explore the environment over time to come up with a desired

policy [25].

3.4. Deep Reinforcement Learning (DRL)

DRL is a subfield of machine learning that combines RL and deep learning. Deep learning (DL) is a

form of machine learning that utilizes a neural network to transform a set of inputs into a set of outputs

via an artificial neural network. DL is a collection of techniques and methods for using neural networks

to solve ML tasks, Supervised Learning, Unsupervised Learning, or Reinforcement Learning. DRL is

based on training deep neural networks to approximate the value functions. The key components of

the DRL are described below.

Agent: The agent is the scheduler which is responsible for scheduling workflow tasks to VMs. At each

time step, it observes the system state and takes an action. Based on the action, it receives a reward

and the next observable state from the environment. The agent's sole objective is to maximize the total

reward it receives in the long run.

Environment: The environment gives the agent a state. The agent receives the state and chooses an

action. The action is applied to the environment and the environment returns a reward and a new state.

Action: The agent performs an action on the environment based on the state .The action is the selection

of the appropriate VM to assign the task.

Reward: The reward represents the feedback value after the action was performed.

Episode: The sequence of actions from the start to the terminal state is an episode, or a trial. An episode

is the time interval from when the agent schedules the first task and the state to when it finishes

scheduling all the workflow tasks.

Value Function: Value functions are state-action pair functions that predict how good a certain action

will be in a given state, or what the expected return will be. This function outputs an estimate of the

reward the agent will receive until the end of the episode.

Deep-Q-Network (DQN): In DQN, a neural network is used to approximate a value function in a Q-

Learning framework. The state is supplied as an input, and the output is the Q-value of all potential

actions. The Q-learning algorithm learns how much long-term reward the agent will get for each state-

action pair (s,a). This algorithm represents it as the function Q(s,a). The procedure for Q- learning

algorithm is given below:

1. Reset the Q-values table, Q(s, a).

2. Observe the current state, s.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 2, February : 2024

UGC CARE Group-1, 138

3. Choose an action, a, for that state s.

4. Take the action, and observe the reward, r, as well as the new state, s'.

5. Update the Q-value for the state using the observed reward and the highest reward achievable

for the following state according to the formula.

6. Set the state to the new state, and repeat the process until a terminal state is reached.

State-Action-Reward-State-Action (SARSA): It is an RL algorithm and an on policy technique and

uses the action performed by the current policy to learn the Q-value ie., the action value

[17]. The major difference between SARSA and Q-learning is that the maximum reward for the next

state is not necessarily used for updating the Q-values. Instead, a new action, and therefore reward, is

selected using the same policy that determined the original action. The name SARSA actually comes

from the fact that the updates are done using the quintuple Q (st, at, rt, st+1, at+1). Here, st, at are the

original state and action, rt is the reward observed in the following state and st+1, at+1 are the new

state- action pair. The procedure for SARSA algorithm is given below:

1. Initialize the Q-values table, Q(st, at).

2. Observe the current state, st.

3. Choose an action, at, for that state st.

4. Take the action, and observe the reward, rt, as well as the new state, st+1.

5. Choose an action, at+1, for that state st+1.

6. Update the Q-value for the state using the observed reward and the highest reward achievable

for the following state according to the formula.

7. Set the state to the new state and action to the new action.

8. Repeat the process until a terminal state is reached.

IV. RESULTS AND DISCUSSION

Cloud computing enhances its performance and throughput by using an efficient scheduling algorithm

that executes a task on selected VM based on performance metrics. The metrics include execution

time, deadline, cost, bandwidth of communication; makespan, reliability, scalability and many others.

The proposed DRLWS technique intends to attain the scheduling of workflow tasks with minimum

makespan and minimal execution cost. Makespan represents the completion time consumed by the last

finished task while the cost represents the total execution cost incurred in scheduling all the workflow

tasks. To illustrate the feasibility and efficiency of the DRLWS method, the performance of the

algorithm is analyzed. The simulation was conducted in Workflowsim toolkit [27].

The DRLWS is evaluated on a real set of scientific workflow applications. Montage, Cybershake and

Ligo Inspiral workflows provided by the Pegasus workflow management system are considered [26].

The structures of these workflows are given in Figure 5. The three workflows have different structures,

data and computational requirements.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 2, February : 2024

UGC CARE Group-1, 139

Figure 5. The structure of the scientific workflows

To determine the significance of the DRLWS scheduling model concerning makespan and cost, these

scientific workflows are used. Four different categories of these workflows are chosen, small (30

tasks), medium (50 tasks), large (100 tasks) and extra-large (1000 tasks) for simulation. The

performance results of workflows such as makespan and cost reduction during the DRLWS learning

process is illustrated in Table 1.

When a workflow is submitted for execution, the priority for all the tasks in the workflow is calculated

based on its task dependencies. Then the available VMs with its specified parameters are identified.

The scheduling agent gets all these information as state st from the environment.The agent then takes

an action at which is the selection of VMs to execute the tasks.

The number of training episodes is set to 500. The average improvement of makespan and cost for

Montage workflows as 48.8% and 5.75% respectively. For Ligo Inspiral workflows, the average

improvement of makespan and cost are 45.05% and 8.98% respectively. Results of Cybershake

workflows demonstrate the average improvement of makespan is 49.47% and the cost is 8.51%.

According to results, DRLWS algorithm learning to create effective schedules across all workflows in

comparison to schedules which were performed at initial steps.

Table 1. Makespan and Cost reduction during DRLWS learning process for all

workflows

. A

set of experiments are carried out with existing DQN technique to compare the performance of

DRLWS. The total cost and makespan required for scheduling the scientific workflows using DRLWS

and DQN are given in Table 2.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 2, February : 2024

UGC CARE Group-1, 140

Table 2. Comparative results of Makespan and Cost for Montage, Ligo Inspiral and Cybershake
Data set No. of Nodes Makespan Cost

DQN model DRLWS
model

DQN model DRLWS model

Montage

25 90.4784 54.25 713.4 680.7

50 187.8 140.28 1623.86 1532.7

100 329.839 220.32 3180.51 3120.59

1000 2742.11 2134.20 32845.71 32145.13

30 1497.
04

1232.15 19982.28 18752.27

50 2464.
82

2123.19 31187.59 30643.76

100 4102.
19

3916.8 60140.20 59254.18

1000 4192
3.28

41432.11 606211.4
1

596425.11

30 174.2
5

149.428 19123.45 18435.12

50 298.2
3

274.34 37675.32 36532.67

100 498.2
0

465.04 75186.12 73296.63

1000 3415.
20

3280.82 122081.7 121408.71

The makespan results of the proposed DRLWS model and existing DQN model for Montage,

Ligoinspiral and Cybershake are shown in Figure 6. The horizontal axis represents the different set of

nodes of the three scientific workflow applications considered for the experiments. The vertical axis

gives the actual makespan taken by the DRLWS and DQN scheduling methods.

a) Makespan Analysis –Montage

b)Makespan Analysis – Ligo Inspiral

c) Makespan Analysis – Cybershake

Figure 6. Visual representation of makespan analysis

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 2, February : 2024

UGC CARE Group-1, 141

The results show that DRLWS significantly decreases the makespan compared with DQN for all three

workflows. The makespan and the total cost of DRLWS against the DQN are statistically better in

each case as shown in Table 2. The comparison analysis of makespan and cost evidently depicts that

the DRLWS performs much better than DQN. In comparison to the DQN, the results exhibit that the

DRLWS algorithm provides better optimality for minimizing makespan and cost using the Montage,

Cybershake and Ligo Inspiral scientific workflow applications.

V. CONCLUSION

The problem of workflow scheduling in cloud has become a crucial research topic and it is a broader

class of combinatorial optimization problem. The purpose is to search a most ideal approach to allocate

tasks to available VMs thereby optimizing the performance metrics. The proposed DRLWS algorithm

for cloud workflow scheduling problem is relies on Deep Reinforcement Learning. In order to expedite

evaluation of DRLWS, the real application workflows Montage, Cybershake and Ligo

Inspiral utilised in diverse scientific areas were applied in this work. Conducted simulation

experiments indicated that the DRLWS algorithm functioned significantly well.

REFERENCES

[1] K.Nithyanandakumari, S.Sivakumar, “Simulation of a Scheduling Strategy for Dependent

Tasks in Cloud Computing”, International Journal of Computational and Applied Mathematics. ISSN

1819-4966 Volume 12, Number 1 (2017)© Research India Publications http://www.ripublication.com.

[2] J.Sahni , DP.Vidyarthi, “A cost-effective deadline-constrained dynamic scheduling algorithm

for scientific workflows in a cloud environment”, IEEE Transactions in Cloud Computing Volume.6,

Issue 1,pp.:2–18.,2018.

[3] X Kong, C Lin, Y Jiang, et al., “ Efficient dynamic task scheduling in virtualized data centers

with fuzzy prediction”, Journal of Network Computing Applications , Volume.34(4), pp: 1068–

1077,2011.

[4] C. Jianfang, C. Junjie, Z. Qingshan, “An optimized scheduling algorithm on a cloud workflow

using a discrete particle swarm,” Cybernetics and Information Technologies, vol. 14, pp. 25-39, 2014.

[5] M. Masdari, S. ValiKardan, Z. Shahi, S. I. Azar, “Towards workflow scheduling in cloud

computing: a comprehensive analysis”, Journal of Network and Computer Applications, vol. 66, pp.

64-82, 2016.

[6] K. Nithyanandakumari , S.Sivakumar , “Performance Evaluation of Enhanced heterogeneous

Earliest Finish Time Algorithm for DAG Task Scheduling in Cloud Computing”, International Journal

of Advanced Science and Technology, Vol. 28, No. 17, pp. 178-191, ISSN: 2005-4238 IJAST ,

Copyright Ⓒ 2019 SERSC.

[7] K. Nithyanandakumari , S.Sivakumar, “ Assessment of Ant Colony Optimization Algorithm

for DAG Task Scheduling in Cloud Computing”, International Journal of Advanced Trends in

Computer Science and Engineering, Vol.9,No.4,July-Aug 2020, ISSN 2278-3091.

[8] Shengjun Xue, Mengying Li, Xiaolong Xu, Jingyi Chen, “ An ACO-LB Algorithm for Task

Scheduling in the Cloud Environment”, Journal of Software, Vol. 9, no. 2, pp.466-473,February 2014.

[9] Wang X, Zhu M, Cheng Y. Reinforcement Learning Principle and Its Application. Beijing,

China: Science Press; 2014.

[10] Lin CC, Deng DJ, Chih YL, Chiu HT, “Smart manufacturing scheduling with edge computing

using multi-class deep Q network”, IEEE Transactions Industrial Informatics, Volume 15(7), pp:4276-

4284. 27. 2019.

[11] Dai H, Khalil EB, Zhang Y, Dilkina B, Le S, “Learning combinatorial optimization algorithms

over graphs” In Proceedings of Advances in Neural Information Processing Systems 30 (NIPS 2017),

Long Beach, CA, 2017.

