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ABSTRACT 

Cloud computing is a platform that provides refined services to a large number of users over a network. 

Scheduling is one of the fundamental solutions to enhance the efficiency of all cloud-based services. 

Cloud scheduling assigns accessible cloud resources to tasks and optimizes numerous performance 

metrics. The massive scale of workflow as well as the elasticity and heterogeneity of cloud resources 

make cloud workflow scheduling difficult. In such a case, machine learning based scheduling models 

using neural networks can be leveraged to solve this challenging problem. The makespan and 

execution cost are the two critical performance metrics in workflow scheduling. In this study, a 

scheduling strategy for workflow is proposed that uses a deep neural network model in a reinforcement 

learning setting. The proponed Deep Reinforcement Learning based Workflow Scheduling (DRLWS) 

model minimizes the makespan and total execution cost. Simulated experiments show that the DRLWS 

model can find better results. 

Keywords: Deep Reinforcement learning, Cloud Computing, Workflow Scheduling, Deep Neural 

network. 

 

I.INTRODUCTION 

Cloud computing is a pay-as-you-go service-oriented model used to provide services to users as per 

their respective demands. As the rapid increase in demand for these services, there is an underlying 

need of improving this platform to improve its quality of service (QoS). Scheduling plays an important 

role in improving all cloud-based services and optimizing overall system performance [1]. Scheduling 

workflows in cloud is referred to as matching workflow tasks onto respective acquired virtual 

machines (VMs), which is aimed at complete execution of workflows by considering their QoS 

requirements. 

A workflow is a model of a complex computation, representing it as a group of specific smaller tasks 

and dependencies. Workflows may be simple or scientific. Scientific workflows are defined with the 

help of Directed Acyclic Graphs (DAG) as they frequently describe the precedence constraints of tasks 

in a workflow application [5]. The scientific workflows can be memory, CPU, or I/O intensive based 

on the nature of the user application. The CPU intensive workflows spend most of the time executing 

the tasks on the processors. However, the memory-intensive workflows require more physical memory 

to store the data on a server. Finally, the I/O-intensive workflows spend most of the time performing 

an input-output operation on the server [2]. Many scientific applications like astronomy, physics and 

bioinformatics are based upon these workflows. 

 

Scientific workflows contain many distinct tasks and complex structures. The large number of tasks 

and inter-dependencies between different tasks make it difficult to efficiently schedule cloud resources 

to scientific workflows. The scheduler must consider these dependencies while scheduling workflows 

[3]. The workflow scheduling problem in heterogeneous computing systems like cloud is an NP-hard 

optimization problem, because the amount of computation required for finding optimum solutions 

increases exponentially as the problem size increases [4]. Numerous state of the art workflow 

scheduling schemes has been put forwarded for scheduling scientific workflows in clouds. The existing 

algorithms offered solutions from numerous aspects. These algorithms are mainly divided into two 

types: heuristics [6] and meta-heuristics [7]. Single heuristic or a combination of heuristics and meta- 

heuristics [8] called hybrid schemes has been designed in the existing works, there remains a need for 
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a workflow scheduling scheme that can quickly and efficiently solve a scheduling problem thereby 

optimizing the QoS constraints like makespan, cost, response time, resource utilization etc., 

Machine learning (ML) algorithms are the most popular methods for solving workflow scheduling 

problems. ML is a vast domain of artificial intelligence that give programs the capability to learn 

patterns, behavior, models and functions, and use these informations to make better decisions. 

Reinforcement Learning (RL) is an important branch of ML that does not learn from a labeled training 

set, but learns from the feedback information of the environment, which is vital for scheduling 

problems because high quality labeled data is impossible to generate [9]. Deep learning is a collection 

of techniques for using neural networks to solve ML tasks [10]. Deep reinforcement learning combines 

the RL and deep learning, which can solve more complex problems [11]. 

Based on above observations, in this work, the workflow scheduling problem is formulated into a Deep 

Reinforcement Learning Algorithm for multi-objective workflow scheduling aiming at optimizing 

both makespan and cost. 

 

II. RELATED WORK 

Scientific workflow applications are collections of several structured activities and fine-grained 

computational tasks related to data and control flow dependencies. Efficient scheduling is very 

important to scientific workflows. Scheduling deals with the allocation of VMs to workflow tasks. Due 

to the diverse set of workflow applications, the particular challenges and opportunities for workflow 

scheduling need to be developed. Hence, several works have been proposed in the field of workflow 

scheduling in the last two decades with the aim of optimizing one or more objectives such as makespan, 

mean flow time, mean tardiness, resource utilization, total execution cost, etc.. This section briefly 

reviews various workflow scheduling algorithms that has been proposed in different literatures. 

 

A heuristic is a technique designed for finding an approximate solution to a problem with complex 

data more quickly when classic methods fail to find any exact solution. The traditional methods are 

mainly based on heuristic algorithms. Farzaneh Abazari et al. [12] designed a heuristic algorithm Multi 

Objective Workflow Scheduling (MOWS) based on the task’s completion time and security 

requirements. A new attack response approach was presented in their work that reduces certain security 

threats providing a reliable scheduling of workflows. Cropper et al. [13], a multi-objective list 

scheduling approach for workflow applications is proposed. Based on a set of objectives constraints 

and weights defined by user, the algorithm attempts to find an appropriate Pareto solution in the region 

of interest for the users. The algorithm is customized and analyzed for four objectives: makespan, cost, 

reliability, and energy. 

A metaheuristic is a high-level problem-independent algorithmic framework that provides a set of 

guidelines to develop heuristic optimization algorithms. Metaheuristic algorithms are usually designed 

for global optimization. Shahram Jamali et al.[14] introduced a new hybrid metaheuristic algorithm 

based on particle swarm optimization (PSO) and gravitation search algorithms. The proposed 

algorithm, in addition to processing cost and transfer cost, takes deadline limitations into account. The 

  

proposed workflow scheduling approach can be used by both end-users and utility providers. Shirvani 

et al. [15] presented a hybrid discrete particle swarm optimization (HDPSO) algorithm that has three 

main phases. At the first phase a random algorithm following by novel theorems is applied to produce 

swarm members; it is as input of presented new discrete particle swarm optimization (DPSO) 

algorithm in the second phase. To avoid getting stuck in sub-optimal trap and to balance between 

exploration and exploitation, local search improvement is randomly combined in DPSO by calling Hill 

Climbing technique at the third phase to enhance overall performance. Second and third phases are 

iterated till the termination criterion is met. 

RL is one of the three basic machine learning paradigms together with supervised learning and 

unsupervised learning. RL has been developed as a promising approach to solve the sequential 
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decision- making problems where the agent makes sequential decisions by continually interacting with 

the environment [16, 17]. Model-free deep reinforcement learning is a combination of the deep neural 

network (DNN) with RL which is capable of making intelligent sequential decisions in sophisticated 

environments. Orhean et al. [18] solved the workflow scheduling problem for heterogeneous 

distributed resources using reinforcement learning (Q-learning and SARSA) to reduce the task 

execution time by implementing a Machine Learning Box (MBox). The Machine Learning Box offers 

scheduling services through the perspective of reinforcement learning algorithm. Huifang Li, et al.[19] 

proposed an improved Deep Q Network (DQN)-based RL algorithm for workflow scheduling to 

optimize dual objectives like makespan and cost simultaneously. The performance of DQN and Actor-

critic (AC) based RL algorithm in scheduling workflows was tested respectively, and then the reward 

function for the DQN algorithm was modified to improve its convergence. 

Mikhail Melnik et al.[20] proposed a scheduling scheme based on Artificial Neural Networks and the 

principles of Reinforcement Learning for scheduling workflows. Experimental results showed that the 

Neural Network Scheduling (NNS) algorithm is able to learn how to provide qualitative schedules in 

terms of workflows’ makespan. Wei et al. [21] proposed a QoS-aware job scheduling algorithm for 

applications in a cloud deployment. They used DQN with target network and experience replay to 

improve the stability of the algorithm. The main objective was to improve the average job response 

time while maximizing VM resource utilization. Wang et al. [22] solved workflow scheduling problem 

aiming at minimizing completion time and cost using a DQN model. The authors applied a deep-Q-

network model in a multi-agent reinforcement learning setting to guide the scheduling of multi- 

workflows over infrastructure-as-a-service clouds. To optimize multi-workflow completion time and 

user’s cost, they considered a Markov game model, which takes the number of workflow applications 

and heterogeneous virtual machines as state input and the maximum completion time and cost as 

rewards. To the best of authors’ knowledge, few works can be found using DRL method in the 

literature. In this work, a novel scheduling strategy DRLWS is established for scheduling workflows 

in cloud 

 

III. PROBLEM DESCRIPTION 

3.1 Workflow Application Model 

The workflow scheduling problem is presented as a DAG W f =< T, E > where T = {ti} is a set of 

tasks and E = {e j,k} is a set of edges. Each task ti represents a computational model or application 

that should be executed. An edge e j,k between tasks t j and tk corresponds to data dependencies among 

them. In this case, task tk is a child task and it could not begin its execution before it receives all 

required input data from parent task t j .Two functions are characterized : suc(t) is a set of children of 

task t and 

  

prd(t) returns its parent tasks. Tasks without parents are called initial tasks and tasks without children 

are called exit tasks. An example of a workflow model is given in Figure 1. The labels T1, T2….T11 

represent the tasks and the nodes of the DAG, while the edges show the 

dependencies between the tasks. These dependencies show that child tasks cannot start before all 

parent tasks finish. 

 
Figure 1. Sample DAG with 7 tasks 
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The cloud provides different types of VMs to its clients. These VMs are connected through a network 

and can communicate with each other, can be represented as V={V1,V2,….Vn) where n is the number 

of VMs. 

 

3.2 Workflow Scheduling Formulation 

. Workflows are commonly used in distributed computing environments like clouds for their 

powerful capabilities in modeling a wide range of applications, including scientific computing, 

multiprocessors system and big data processing applications [18]. Therefore, the workflow scheduling 

problem is the mapping of workflow tasks to the virtual machines T  V .For scheduling 

workflows deep reinforcement learning is used in this study and the objectives of the proposed work 

are to minimize the makespan and cost. The scheduling problem can be formulated as a multi-objective 

problem given by 

  
 

The cost is the total rental cost of all VMs for the whole workflow execution and calculated as in (3). 

prepresents cost per the interval unit of virtual machine Vk. The makespan MS is calculated as follows: 

  
(4) 

The execution time  Et of task ti   on resource Vk, can be calculated as follows: 

  
(5) 
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3.3 Reinforcement Learning 

Reinforcement learning combines the fields of dynamic programming and supervised learning to yield 

powerful machine-learning systems. RL is the branch of machine learning that deals with training 

agents to take an action a, as a response to the state s of the environment to get a notion of reward, r as 

shown in Figure 2. The ideas involved in RL were originally developed by Sutton and Barto [24]. 

 
Figure 2. The basic reinforcement learning model 

  

The task of the agent is to learn a policy for choosing actions in each state to receive the maximal long-

run cumulative rewards. RL methods explore the environment over time to come up with a desired 

policy [25]. 

3.4. Deep Reinforcement Learning (DRL) 

DRL is a subfield of machine learning that combines RL and deep learning. Deep learning (DL) is a 

form of machine learning that utilizes a neural network to transform a set of inputs into a set of outputs 

via an artificial neural network. DL is a collection of techniques and methods for using neural networks 

to solve ML tasks, Supervised Learning, Unsupervised Learning, or Reinforcement Learning. DRL is 

based on training deep neural networks to approximate the value functions. The key components of 

the DRL are described below. 

Agent: The agent is the scheduler which is responsible for scheduling workflow tasks to VMs. At each 

time step, it observes the system state and takes an action. Based on the action, it receives a reward 

and the next observable state from the environment. The agent's sole objective is to maximize the total 

reward it receives in the long run. 

Environment: The environment gives the agent a state. The agent receives the state and chooses an 

action. The action is applied to the environment and the environment returns a reward and a new state. 

Action: The agent performs an action on the environment based on the state .The action is the selection 

of the appropriate VM to assign the task. 

Reward: The reward represents the feedback value after the action was performed. 

Episode: The sequence of actions from the start to the terminal state is an episode, or a trial. An episode 

is the time interval from when the agent schedules the first task and the state to when it finishes 

scheduling all the workflow tasks. 

Value Function: Value functions are state-action pair functions that predict how good a certain action 

will be in a given state, or what the expected return will be. This function outputs an estimate of the 

reward the agent will receive until the end of the episode. 

 

Deep-Q-Network (DQN): In DQN, a neural network is used to approximate a value function in a Q-

Learning framework. The state is supplied as an input, and the output is the Q-value of all potential 

actions. The Q-learning algorithm learns how much long-term reward the agent will get for each state-

action pair (s,a). This algorithm represents it as the function Q(s,a). The procedure for Q- learning 

algorithm is given below: 

1. Reset the Q-values table, Q(s, a). 

2. Observe the current state, s. 
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3. Choose an action, a, for that state s. 

4. Take the action, and observe the reward, r, as well as the new state, s'. 

5. Update the Q-value for the state using the observed reward and the highest reward achievable 

for the following state according to the formula. 

 
6. Set the state to the new state, and repeat the process until a terminal state is reached. 

 

State-Action-Reward-State-Action (SARSA): It is an RL algorithm and an on policy technique and 

uses the action performed by the current policy to learn the Q-value ie., the action value 

  

[17]. The major difference between SARSA and Q-learning is that the maximum reward for the next 

state is not necessarily used for updating the Q-values. Instead, a new action, and therefore reward, is 

selected using the same policy that determined the original action. The name SARSA actually comes 

from the fact that the updates are done using the quintuple Q (st, at, rt, st+1, at+1). Here, st, at are the 

original state and action, rt is the reward observed in the following state and st+1, at+1 are the new 

state- action pair. The procedure for SARSA algorithm is given below: 

 

1. Initialize the Q-values table, Q(st, at). 

2. Observe the current state, st. 

3. Choose an action, at, for that state st. 

4. Take the action, and observe the reward, rt, as well as the new state, st+1. 

5. Choose an action, at+1, for that state st+1. 

6. Update the Q-value for the state using the observed reward and the highest reward achievable 

for the following state according to the formula. 

 
7. Set the state to the new state and action to the new action. 

8. Repeat the process until a terminal state is reached. 

 

IV. RESULTS AND DISCUSSION 

Cloud computing enhances its performance and throughput by using an efficient scheduling algorithm 

that executes a task on selected VM based on performance metrics. The metrics include execution 

time, deadline, cost, bandwidth of communication; makespan, reliability, scalability and many others. 

The proposed DRLWS technique intends to attain the scheduling of workflow tasks with minimum 

makespan and minimal execution cost. Makespan represents the completion time consumed by the last 

finished task while the cost represents the total execution cost incurred in scheduling all the workflow 

tasks. To illustrate the feasibility and efficiency of the DRLWS method, the performance of the 

algorithm is analyzed. The simulation was conducted in Workflowsim toolkit [27]. 

 

The DRLWS is evaluated on a real set of scientific workflow applications. Montage, Cybershake and 

Ligo Inspiral workflows provided by the Pegasus workflow management system are considered [26]. 

The structures of these workflows are given in Figure 5. The three workflows have different structures, 

data and computational requirements. 
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Figure 5. The structure of the scientific workflows 

To determine the significance of the DRLWS scheduling model concerning makespan and cost, these 

scientific workflows are used. Four different categories of these workflows are chosen, small (30 

tasks), medium (50 tasks), large (100 tasks) and extra-large (1000 tasks) for simulation. The 

performance results of workflows such as makespan and cost reduction during the DRLWS learning 

process is illustrated in Table 1. 

When a workflow is submitted for execution, the priority for all the tasks in the workflow is calculated 

based on its task dependencies. Then the available VMs with its specified parameters are identified. 

The scheduling agent gets all these information as state st from the environment.The agent then takes 

an action at which is the selection of VMs to execute the tasks. 

The number of training episodes is set to 500. The average improvement of makespan and cost for 

Montage workflows as 48.8% and 5.75% respectively. For Ligo Inspiral workflows, the average 

improvement of makespan and cost are 45.05% and 8.98% respectively. Results of Cybershake 

workflows demonstrate the average improvement of makespan is 49.47% and the cost is 8.51%. 

According to results, DRLWS algorithm learning to create effective schedules across all workflows in 

comparison to schedules which were performed at initial steps. 

 

Table 1. Makespan and Cost reduction during DRLWS learning process for all 

workflows 

. A 

set of experiments are carried out with existing DQN technique to compare the performance of 

DRLWS. The total cost and makespan required for scheduling the scientific workflows using DRLWS 

and DQN are given in Table 2. 
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Table 2. Comparative results of Makespan and Cost for Montage, Ligo Inspiral and Cybershake 
Data set No. of Nodes Makespan Cost 

DQN model DRLWS 
model 

DQN model DRLWS model 

 
Montage 

25 90.4784 54.25 713.4 680.7 

50 187.8 140.28 1623.86 1532.7 

100 329.839 220.32 3180.51 3120.59 

1000 2742.11 2134.20 32845.71 32145.13 

30 1497.
04 

1232.15 19982.28 18752.27 

50 2464.
82 

2123.19 31187.59 30643.76 

100 4102.
19 

3916.8 60140.20 59254.18 

1000 4192
3.28 

41432.11 606211.4
1 

596425.11 

30 174.2
5 

149.428 19123.45 18435.12 

50 298.2
3 

274.34 37675.32 36532.67 

100 498.2
0 

465.04 75186.12 73296.63 

1000 3415.
20 

3280.82 122081.7 121408.71 

 

The makespan results of the proposed DRLWS model and existing DQN model for Montage, 

Ligoinspiral and Cybershake are shown in Figure 6. The horizontal axis represents the different set of 

nodes of the three scientific workflow applications considered for the experiments. The vertical axis 

gives the actual makespan taken by the DRLWS and DQN scheduling methods. 

 
a)   Makespan Analysis –Montage  

 
b)Makespan Analysis – Ligo Inspiral 

 
c) Makespan Analysis – Cybershake 

Figure 6. Visual representation of makespan analysis 
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The results show that DRLWS significantly decreases the makespan compared with DQN for all three 

workflows. The makespan and the total cost of DRLWS against the DQN are statistically better in 

each case as shown in Table 2. The comparison analysis of makespan and cost evidently depicts that 

the DRLWS performs much better than DQN. In comparison to the DQN, the results exhibit that the 

DRLWS algorithm provides better optimality for minimizing makespan and cost using the Montage, 

Cybershake and Ligo Inspiral scientific workflow applications. 

 

V. CONCLUSION 

The problem of workflow scheduling in cloud has become a crucial research topic and it is a broader 

class of combinatorial optimization problem. The purpose is to search a most ideal approach to allocate 

tasks to available VMs thereby optimizing the performance metrics. The proposed DRLWS algorithm 

for cloud workflow scheduling problem is relies on Deep Reinforcement Learning. In order to expedite 

evaluation of DRLWS, the real application workflows Montage, Cybershake and Ligo 

Inspiral utilised in diverse scientific areas were applied in this work. Conducted simulation 

experiments indicated that the DRLWS algorithm functioned significantly well. 
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